Unravelling carbon metabolism in anaerobic cellulolytic bacteria.
نویسنده
چکیده
Carbon metabolism in anaerobic cellulolytic bacteria has been investigated essentially in Clostridium thermocellum, Clostridium cellulolyticum, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus. While cellulose depolymerization into soluble sugars by various cellulases is undoubtedly the first step in bacterial metabolisation of cellulose, it is not the only one to consider. Among anaerobic cellulolytic bacteria, C. cellulolyticum has been investigated metabolically the most in the past few years. Summarizing metabolic flux analyses in continuous culture using either cellobiose (a soluble cellodextrin resulting from cellulose hydrolysis) or cellulose (an insoluble biopolymer), this review aims to stress the importance of the insoluble nature of a carbon source on bacterial metabolism. Furthermore, some general and specific traits of anaerobic cellulolytic bacteria trends, namely, the importance and benefits of (i) cellodextrins with degree of polymerization higher than 2, (ii) intracellular phosphorolytic cleavage, (iii) glycogen cycling on cell bioenergetics, and (iv) carbon overflows in regulation of carbon metabolism, as well as detrimental effects of (i) soluble sugars and (ii) acidic environment on bacterial growth. Future directions for improving bacterial cellulose degradation are discussed.
منابع مشابه
The effects of the combination of bioplastic and its degrading bacteria (Genus Acidovorax) on the metabolic activity of anaerobic bacteria in Siberian sturgeon (Acipenser baerii) fingerlings hindgut by using CLPP
Community Level Physiological Profiles (CLPP) is novel method to evaluate microbial activity and diversity in ecosystems. According to the previous findings, poly-β-hydroxybutyrate (PHB) as a bio-control product, increases bacterial diversity in some aquatic animals. In this study, the effects of four experimental diets (control, combination of two PHB degrading bacteria, 2% PHB, bacteria+ 2% P...
متن کاملBiohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives
Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an ex...
متن کامل49. The Novel Cellulolytic Strategy of Cellulomonas gilvus
Project Goals: The use of cellulolytic bacteria for generating cellulosic ethanol has recently been the focus of extensive research. This research has primarily focused on using engineered strains of cellulolytic bacteria, but there is growing interest in understanding the fundamental processes of cellulose degradation for identifying novel enzymes or for finding organisms capable of more effic...
متن کاملClostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia.
Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates...
متن کاملDraft Genome Sequence of the Cellulolytic, Mesophilic, Anaerobic Bacterium Clostridium termitidis Strain CT1112 (DSM 5398)
Here, we report the draft genome sequence of Clostridium termitidis strain CT1112 (DSM 5398), a mesophilic, cellulolytic bacterium that can utilize a variety of sugars, as well as pure cellulose, as a sole carbon source; it also synthesizes fermentation end products with potential industrial applications.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology progress
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2006